Hvordan dele en sirkel inn i tredeler

Posted on
Forfatter: Peter Berry
Opprettelsesdato: 20 August 2021
Oppdater Dato: 14 November 2024
Anonim
How to make a gear on a lathe.
Video: How to make a gear on a lathe.

Innhold

Sirkler er overalt i natur, kunst og vitenskaper. Solen og månen, gjennom sfæriske, danner sirkler på himmelen og beveger seg i omtrent sirkulære baner; hendene på en klokke og hjulene på biler sporer sirkulære stier; filosofisk tenkende observatører snakker om en "livskrets."

Sirkler i enkle vendinger er matematiske konstruksjoner. Det kan hende du må vite, ved hjelp av matematikk, hvordan du skiller en komplett sirkel i like deler for kake, land eller kunstneriske formål. Hvis du har en blyant, sammen med en gradskive, et kompass eller begge deler, er det enkelt og lærerikt å dele en sirkel i tre like deler.

En sirkel omslutter 360 grader av en lysbue, så for denne øvelsen må du lage en "kake" med tre like 120 ° vinkler i sentrum.

Trinn 1: Tegn diameteren

Bruk retningen din (linjal eller gradskive) til å tegne en diameter eller linje gjennom midten av sirkelen som når begge kanter. Dette deler selvfølgelig sirkelen din i to.

Trinn 2: Merk sentrum

Hvis sentrum av sirkelen ikke er markert, finner du den i dette trinnet fordi diameteren til en sirkel er den lengste avstanden over sirkelen. Del ganske enkelt verdien på diameteren med 2 og plasser et punkt halvveis langs linjen fra den ene kanten for å indikere sentrum.

Trinn 2: Mål halvveis til en kant

Bruk linjal eller gradskive for å finne et punkt nøyaktig halvveis mellom sentrum og en kant, eller tilsvarende en fjerdedel av diameteren eller halvparten av radius. Merk dette punktet A.

Trinn 3: Tegn en vinkelrett linje gjennom punkt A til begge kanter

Bruk gradskive, eller om nødvendig den korte kanten på linjalen din, til å tegne en linje gjennom punkt A. Utvid denne linjen til kantene på sirkelen. Merk punktene der denne linjen skjærer kanten av sirkelen B og C.

Trinn 4: Tegn linjer fra sentrum til poeng B og C

Bruk linjene dine til å lage linjer som forbinder sirkelsenteret med punkt B og C. Disse linjene representerer radier av sirkelen, som har en verdi av halvparten av diameteren.

Trinn 5: Bruk geometri for å løse problemet

Du har nå to rette trekanter påskrevet i sirkelen. Fordi det korte benet til hver av disse er halvparten avstanden til sirkelens hypotenuse, som er den samme som en radius, kan du kanskje innse at disse høyre trekantene er "30-60-90" trekanter, som har eiendommen av den korteste siden som er halvparten av den lengste.

På grunn av dette kan du konkludere med at de indre vinklene til sirkelen du har opprettet mellom de to hypotenusene, og hypotenusen og diameteren på motsatt side av sirkelen, hver er 120 °. Du har dermed en sirkel delt inn i tre like deler.