Hvordan finne summen og forskjellen på terninger

Posted on
Forfatter: Randy Alexander
Opprettelsesdato: 23 April 2021
Oppdater Dato: 17 November 2024
Anonim
Hvordan finne summen og forskjellen på terninger - Vitenskap
Hvordan finne summen og forskjellen på terninger - Vitenskap

Innhold

Noen ganger er den eneste måten å komme seg gjennom matematiske beregninger på med brute force. Men noen ganger kan du spare mye arbeid ved å gjenkjenne spesielle problemer som du kan bruke en standardisert formel for å løse. Å finne summen av terninger og finne forskjellen på terninger er to eksempler på akkurat det: Når du først har kjent formlene for faktorering en3 + b3 eller en3 - b3, å finne svaret er like enkelt som å erstatte verdiene for a og b i riktig formel.

Putting It To Con

Først en rask titt på hvorfor du kanskje vil finne - eller mer passende "faktor" - summene eller forskjellen på terninger. Når konseptet først introduseres, er det et enkelt matematikkproblem i seg selv. Men hvis du fortsetter å studere matematikk, vil dette senere bli et mellomtrinn i mer komplekse beregninger. Så hvis du får en3 + b3 eller en3 - b3 som et svar under andre beregninger, kan du bruke ferdighetene du er i ferd med å lære å dele de kuberte tallene fra hverandre til enklere komponenter, noe som ofte gjør det lettere å fortsette å løse det opprinnelige problemet.

Factoring Sum of Cubes

Se for deg at du har kommet til binomialen x3 + 27 og blir bedt om å forenkle det. Den første termin, x3, er åpenbart et kubbertall. Etter en liten undersøkelse kan du se at det andre tallet faktisk også er et kubbertall: 27 er det samme som 33. Nå som du vet at begge tallene er terninger, kan du bruke formelen for summen av terninger.

    Skriv ut begge tallene i deres kuberform, hvis det ikke allerede er tilfelle. For å fortsette dette eksemplet, vil du ha:

    x3 + 27 = x3 + 33

    Når du er vant til prosessen, kan du hoppe over dette trinnet og gå rett til å fylle verdiene fra trinn 1 i formelen. Men spesielt når du lærer, er det best å gå skritt for skritt og minne deg om formelen:

    en3 + b3 = (en + b) (en2 - ab + b2)

    Sammenlign venstre side av denne ligningen med resultatet fra trinn 1. Merk at du kan erstatte x i stedet for en, og 3 i stedet for b.

    Sett inn verdiene fra trinn 1 i formelen i trinn 2. Så du har:

    x3 + 33 = (x + 3) (x2 - 3_x_ + 32)

    Foreløpig representerer svaret ditt ved å komme til høyre side av ligningen. Dette er resultatet av faktureringen av summen av to kuber.

Å faktorere forskjellen på terninger

Å faktorere forskjellen på to kuberte tall fungerer på samme måte. Faktisk er formelen nesten identisk med formelen for summen av terninger. Men det er en kritisk forskjell: Vær spesielt oppmerksom på hvor minustegnet går.

    Se for deg at du får problemet y3 - 125 og må faktorere det. Som før, y3 er en åpenbar kube, og med litt tanke skal du kunne erkjenne at 125 faktisk er 53. Så du har:

    y3 - 125 = y3 - 53

    Som før, skriv ut formelen for forskjellen på terninger. Legg merke til at du kan erstatte y til en og 5 for b, og vær spesielt oppmerksom på hvor minustegnet går i denne formelen. Plasseringen av minustegnet er den eneste forskjellen mellom denne formelen og formelen for summen av terninger.

    en3 - b3 = (en - b)(en2 + ab + b2)

    Skriv formelen ut igjen, denne gangen ved å erstatte verdiene fra trinn 1. Dette gir:

    y3 - 53 = (y - 5)(y2 + 5_y_ + 52)

    Igjen, hvis alt du trenger å gjøre er å faktorere forskjellen på kubene, er dette svaret ditt.